logo
0
0
Login
wsq_star<wsq_star@outlook.com>
feat: 增强地图组件调试日志,完善错误处理和状态跟踪,优化路网数据更新流程

🧠 地理空间感知系统(Geospatial Sense System)

📌 项目概述

本项目旨在构建一个地理空间感知系统,帮助智能体(如自动驾驶车辆、机器人、无人机等)感知和理解其周围的地理环境。该系统支持从多种数据源(包括手动输入、GeoJSON 文件、Shapefile 文件)加载地理数据,并提供路径规划、可视化、感知等功能。

GISense 地理感知系统设计文档 v2.0

1. 系统架构

1.1 整体架构图

1.2 技术栈

组件技术选型版本要求
核心框架Python 3.10+≥3.10.6
地理处理GeoPandas 0.12+≥0.12.2
空间索引Rtree 0.9+≥0.9.7
路径规划NetworkX 3.0+≥3.0
可视化Folium/Matplotlib可选
并发处理asyncio/Ray可选

2. 核心模块设计

2.1 ResearchArea 主控类

class ResearchArea: def __init__(self, name: str, crs: str = "EPSG:4326"): self.name = name self.crs = crs # 强制统一坐标系 self.road_network = RoadNetwork() self.poi_collection = POICollection() self.agent_manager = AgentManager() self.sim_engine = SimulationEngine() self.graph_editor = GraphEditor() def load_data(self, config: dict): """支持多数据源加载 config示例: { "roads": { "type": "shp", "path": "data/roads.shp", "topo_check": True }, "pois": { "type": "geojson", "path": "data/pois.geojson" } } """

2.2 RoadNetwork 路网模型

数据结构

class RoadNode(TypedDict): node_id: str # "lat_lon_uuid" lon: float lat: float elevation: Optional[float] connectivity: int # 连接边数 class RoadEdge(TypedDict): edge_id: str start_node: str end_node: str length: float # 米 geometry: LineString attrs: dict # 道路等级/车道数等

空间索引

class HybridIndex: def __init__(self): self.rtree = index.Index() # 精确索引 self.grid = SpatialGrid(100) # 100m网格粗索引 def query(self, bbox: tuple, zoom_level: int): """混合查询策略: - zoom_level > 12: 使用RTree精确查询 - zoom_level ≤ 12: 使用网格快速过滤 """

2.3 Agent 系统设计

类继承关系

移动策略模式

class MovementStrategy(ABC): @abstractmethod def calculate_move(self, agent: Agent, dt: float) -> MovementCommand: pass class NetworkMovement(MovementStrategy): def calculate_move(self, agent, dt): """沿路网移动逻辑""" next_node = agent.current_edge.end_node return MoveToNodeCommand(next_node) class FreeMovement(MovementStrategy): def calculate_move(self, agent, dt): """自由空间移动""" return MoveByVectorCommand(agent.velocity * dt)

3. 数据流设计

3.1 主要工作流程

3.2 关键算法

3.2.1 最近邻查询算法

def find_nearest_edge(point: Point) -> Tuple[Edge, float]: """混合查询算法流程: 1. 使用网格索引快速筛选候选边(10-50条) 2. 使用RTree进行精确距离计算 3. 应用Shapely的nearest_points优化 4. 返回最近边及投影点 时间复杂度:O(logN + M) M为候选边数 """

3.2.2 路径规划优化

class RoutePlanner: def __init__(self, network: RoadNetwork): self.ch = ContractionHierarchies(network) # 预计算层次 def shortest_path(self, start: Point, end: Point) -> Route: """使用CH加速查询: 1. 将起点/终点投影到路网 2. 在高层级图上快速路由 3. 逐步细化到底层路径 比传统A*快5-10倍 """

4. 接口规范

4.1 公共API列表

端点方法描述
/v1/spatial/queryPOST空间查询接口
/v1/routing/calculateGET路径规划接口
/v1/agents/{id}/positionGET获取Agent实时位置
/v1/simulation/stepPUT推进模拟时间步长

4.2 请求/响应示例

路径规划请求

{ "origin": { "lon": 121.4737, "lat": 31.2304, "node_id": "optional" }, "destination": { "lon": 121.4788, "lat": 31.2355 }, "profile": { "type": "car", "options": { "avoid_tolls": true, "max_speed": 100 } } }

成功响应

{ "status": "success", "data": { "path": [ [121.4737, 31.2304], [121.4740, 31.2306], ... ], "cost": 125.6, "edges": ["E4512", "E4513"], "geometry": "LINESTRING(...)" }, "metadata": { "processing_time": 23.5 } }

5. 存储设计

5.1 内存数据结构

class ResearchAreaData: road_network: nx.MultiDiGraph poi_kd_tree: KDTree # 快速POI查询 agent_states: Dict[str, AgentState] class AgentState(NamedTuple): position: Tuple[float, float] velocity: float current_edge: Optional[str] path: Optional[List[Tuple]]

5.2 持久化方案

def save_snapshot(path: str, format: str = "parquet"): """支持保存为: - Parquet(推荐,压缩率高) - GeoJSON(可读性好) - Protocol Buffers(高性能) """ def load_snapshot(path: str): """自动检测格式并加载"""

6. 性能优化

6.1 关键指标

场景目标性能实现手段
10k节点路网加载<1.5s并行化Shp解析
100 Agent并发移动<50ms/step向量化位置更新
1km²区域POI查询<10ms分层空间索引
10km路径规划<100ms预计算Contraction Hierarchy

6.2 优化技巧

# 使用Numba加速距离计算 @njit def calculate_distances(points: np.ndarray) -> np.ndarray: """计算点阵间距离矩阵""" n = points.shape[0] dists = np.zeros((n, n)) for i in range(n): for j in range(n): dists[i,j] = haversine(points[i], points[j]) return dists

7. 扩展设计

7.1 插件开发模板

# plugins/template.py class GISensePlugin: def __init__(self, research_area: ResearchArea): self.area = research_area def on_load(self): """插件加载时调用""" def on_sim_step(self, dt: float): """模拟步进时调用""" def register(research_area: ResearchArea) -> GISensePlugin: return MyPlugin(research_area)

7.2 典型扩展场景

  1. 天气模拟:影响移动速度
  2. 动态障碍物:实时修改路网
  3. 三维扩展:添加高程维度
  4. 视觉渲染:集成Cesium/Deck.gl

8. 测试方案

8.1 单元测试重点

class TestRoadNetwork(unittest.TestCase): def test_node_connectivity(self): """测试节点连接性""" self.assertEqual(network.get_node_degree('n123'), 3) def test_path_continuity(self): """测试路径连续性""" path = network.shortest_path('A', 'B') self.assertTrue(check_path_connected(path))

8.2 压力测试场景

# 使用Locust模拟并发 $ locust -f tests/load_test.py --users 100 --spawn-rate 10

9. 部署方案

9.1 容器化配置

FROM python:3.10-slim RUN pip install gisense geopandas==0.12.2 # 启用JIT加速 ENV NUMBA_DISABLE_JIT=0 EXPOSE 8000 CMD ["gunicorn", "gisense.api:app", "-b :8000"]

9.2 水平扩展建议

10. 路线图

版本重点功能预计周期
v1.0基础路网建模+Agent移动6周
v1.5高性能路径规划+空间索引4周
v2.0分布式模拟+三维扩展8周

11. 附录

以下是 GISense 基础实现的详细伪代码,包含关键设计细节和可扩展的接口定义:


1. 核心数据结构伪代码

1.1 节点命名与创建

import uuid from typing import NamedTuple class GeoCoordinate(NamedTuple): lon: float # 经度 [-180, 180] lat: float # 纬度 [-90, 90] alt: float = 0.0 # 高程(可选) class Node: def __init__(self, coord: GeoCoordinate, osm_id: str = None): self.coord = coord self.osm_id = osm_id # 保留原始ID self.uid = self._generate_uid(coord) @staticmethod def _generate_uid(coord: GeoCoordinate) -> str: """生成唯一节点ID:base36(经纬度哈希)_随机后缀""" lat_lon_hash = hash(f"{coord.lat:.6f}_{coord.lon:.6f}") return ( base36_encode(abs(lat_lon_hash))[:6] + "_" + str(uuid.uuid4())[:4] ) @property def as_shapely(self) -> Point: return Point(self.coord.lon, self.coord.lat)

1.2 边结构设计

class RoadEdge: def __init__(self, edge_id: str, start_node: Node, end_node: Node, geometry: LineString, attrs: dict = None): self.edge_id = edge_id self.nodes = (start_node, end_node) self.geometry = geometry # Shapely LineString self.length = geometry.length # 单位:米 self.attrs = attrs or {} # 动态计算字段 self._bbox = geometry.bounds # 缓存边界框 def split(self, ratio: float) -> Tuple['RoadEdge', 'RoadEdge']: """在比例位置分割边(0.3表示30%位置)""" split_point = self.geometry.interpolate(ratio, normalized=True) new_node = Node(GeoCoordinate(*split_point.coords[0])) # 创建两条新边 edge1 = RoadEdge( edge_id=f"{self.edge_id}_a", start_node=self.nodes[0], end_node=new_node, geometry=LineString(list(self.geometry.coords)[:int(ratio*100)]) edge2 = RoadEdge( edge_id=f"{self.edge_id}_b", start_node=new_node, end_node=self.nodes[1], geometry=LineString(list(self.geometry.coords)[int(ratio*100):])) return edge1, edge2

2. 空间索引伪代码

2.1 混合索引实现

class HybridIndex: def __init__(self, grid_size: float = 100.0): self.rtree = index.Index() self.grid = {} self.grid_size = grid_size def _get_grid_key(self, point: Point) -> Tuple[int, int]: """计算点所属网格坐标""" return ( int(point.x // self.grid_size), int(point.y // self.grid_size) ) def insert(self, obj: Union[Node, RoadEdge]): """插入对象到索引""" # RTree插入 self.rtree.insert(id(obj), obj.bbox) # 网格索引插入 if isinstance(obj, Node): grid_key = self._get_grid_key(obj.as_shapely) self.grid.setdefault(grid_key, []).append(obj) else: # RoadEdge for segment in self._split_edge_to_grid(obj): grid_key = self._get_grid_key(segment.centroid) self.grid.setdefault(grid_key, []).append(obj) def query_radius(self, center: Point, radius: float) -> List: """圆形区域查询优化流程""" # 第一步:网格快速过滤 affected_grids = self._get_grids_in_radius(center, radius) candidates = [] for grid in affected_grids: candidates.extend(self.grid.get(grid, [])) # 第二步:RTree精确筛选 precise_matches = [ obj for obj in candidates if self.rtree.intersection(obj.bbox) and center.distance(obj.geometry) <= radius ] return precise_matches

3. 线性参考系统伪代码

3.1 位置编码/解码

class LinearReference: @staticmethod def encode_position(edge: RoadEdge, point: Point) -> dict: """将点编码为线性参考位置""" projected = edge.geometry.project(point) return { "edge_id": edge.edge_id, "offset": projected, # 距起点的米数 "ratio": projected / edge.length, "node_a": edge.nodes[0].uid, "node_b": edge.nodes[1].uid } @staticmethod def decode_position(ref: dict) -> Point: """从线性参考解码为坐标""" edge = get_edge_by_id(ref["edge_id"]) return edge.geometry.interpolate(ref["offset"])

4. Agent移动逻辑伪代码

4.1 移动策略接口

class MovementStrategy(ABC): @abstractmethod def get_next_position(self, agent: 'Agent', current_pos: GeoCoordinate, dt: float) -> GeoCoordinate: pass class NetworkStrategy(MovementStrategy): def get_next_position(self, agent, current_pos, dt): """沿路网移动策略""" if not agent.current_path: agent.current_path = self._find_path(agent.destination) next_node = agent.current_path.pop(0) move_vector = self._calculate_move_vector( current_pos, next_node.coord, agent.speed * dt ) return current_pos + move_vector class FreeMoveStrategy(MovementStrategy): def get_next_position(self, agent, current_pos, dt): """自由空间移动策略""" return GeoCoordinate( current_pos.lon + agent.velocity.lon * dt, current_pos.lat + agent.velocity.lat * dt )

5. 数据持久化伪代码

5.1 序列化设计

class GraphEncoder: @staticmethod def to_geojson(nodes: List[Node], edges: List[RoadEdge]) -> dict: """转换为GeoJSON格式""" return { "type": "FeatureCollection", "features": [ *[{ "type": "Feature", "geometry": node.as_shapely.__geo_interface__, "properties": {"uid": node.uid} } for node in nodes], *[{ "type": "Feature", "geometry": edge.geometry.__geo_interface__, "properties": { "edge_id": edge.edge_id, "length": edge.length, **edge.attrs } } for edge in edges] ] } @staticmethod def from_geojson(data: dict) -> Tuple[List[Node], List[RoadEdge]]: """从GeoJSON解析""" # 实现逆解析逻辑

6. 异常处理设计

6.1 自定义异常

class GISenseError(Exception): """基础异常类""" class TopologyError(GISenseError): """拓扑关系异常""" def __init__(self, edge1: str, edge2: str): super().__init__(f"Edge {edge1} and {edge2} are not connected") class SpatialQueryError(GISenseError): """空间查询异常""" def __init__(self, point: GeoCoordinate, radius: float): super().__init__( f"No results found around {point} within {radius}m")

关键设计决策说明:

  1. 节点ID生成

    • 采用base36(经纬度哈希)_4位UUID的混合方案
    • 优点:相同坐标生成相同前缀,便于调试;UUID后缀保证唯一性
    • 示例:k5g9f3_1a2b
  2. 边分割策略

    • 保留原始边ID并添加后缀(如E123_aE123_b
    • 自动计算分割后的几何对象长度
  3. 混合索引优化

    • 网格索引用于快速筛选
    • RTree用于精确计算
    • 对长边进行网格分段索引
  4. 线性参考系统

    • 同时存储offsetratio两种表示法
    • 支持通过任意一种方式还原坐标
  5. 策略模式应用

    • 移动策略可运行时切换
    • 易于扩展新的移动方式(如三维飞行)

推荐的实现顺序:

  1. 先实现NodeRoadEdge基础类
  2. 构建HybridIndex并测试空间查询
  3. 实现LinearReference位置编码
  4. 开发MovementStrategy及其子类
  5. 最后完成持久化模块

About

No description, topics, or website provided.
Language
CSV94%
Python1.9%
Vue1.8%
Markdown1.1%
Others1.2%