logo
0
0
Login
HaoranWei<18811779866@163.com>
Initial public release
DeepSeek AI

🌟 Github | 📥 Model Download | 📄 Paper Link | 📄 Arxiv Paper Link |

DeepSeek-OCR: Contexts Optical Compression

Explore the boundaries of visual-text compression.

Usage

Inference using Huggingface transformers on NVIDIA GPUs. Requirements tested on python 3.12.9 + CUDA11.8:

torch==2.6.0 transformers==4.46.3 tokenizers==0.20.3 einops addict easydict pip install flash-attn==2.7.3 --no-build-isolation
from transformers import AutoModel, AutoTokenizer import torch import os os.environ["CUDA_VISIBLE_DEVICES"] = '0' model_name = 'deepseek-ai/DeepSeek-OCR' tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = AutoModel.from_pretrained(model_name, _attn_implementation='flash_attention_2', trust_remote_code=True, use_safetensors=True) model = model.eval().cuda().to(torch.bfloat16) # prompt = "<image>\nFree OCR. " prompt = "<image>\n<|grounding|>Convert the document to markdown. " image_file = 'your_image.jpg' output_path = 'your/output/dir' # infer(self, tokenizer, prompt='', image_file='', output_path = ' ', base_size = 1024, image_size = 640, crop_mode = True, test_compress = False, save_results = False): # Tiny: base_size = 512, image_size = 512, crop_mode = False # Small: base_size = 640, image_size = 640, crop_mode = False # Base: base_size = 1024, image_size = 1024, crop_mode = False # Large: base_size = 1280, image_size = 1280, crop_mode = False # Gundam: base_size = 1024, image_size = 640, crop_mode = True res = model.infer(tokenizer, prompt=prompt, image_file=image_file, output_path = output_path, base_size = 1024, image_size = 640, crop_mode=True, save_results = True, test_compress = True)

vLLM

Refer to 🌟GitHub for guidance on model inference acceleration and PDF processing, etc.

Visualizations

Acknowledgement

We would like to thank Vary, GOT-OCR2.0, MinerU, PaddleOCR, OneChart, Slow Perception for their valuable models and ideas.

We also appreciate the benchmarks: Fox, OminiDocBench.

Citation

Coming soon!