logo
2
0
Login
Forkfromzc1zc2/T2ITrainer, behind:main14 commits

🚀 T2ITrainer

⚠️ Development Notice: Currently in active development - stability not guaranteed. Frequent updates - check changelogs regularly.

T2ITrainer is a diffusers based training script. It aims to provide simple yet implementation for lora training.

📅 Recent Updates

  • 2025-06-27: Support kontext nf4 training
Rehosted an nf4 version flux kontext on https://huggingface.co/lrzjason/flux-kontext-nf4 Rehosted an nf4 version flux fill on https://huggingface.co/lrzjason/flux-fill-nf4 download nf4 version flux fill and use it for training could significantly decrease lora training VRAM requirement.

🛡️ Prerequisites

  • PyTorch: torch>=2.3.0+cu121 (CUDA 12.1 supported) PyPI

💻 Supported Training Configurations

Model TypeVRAM RequirementsStatus
Kolors11GB GPU✅ Supported
SD3.5 (FP16 BS1)24GB GPU✅ Supported
Flux Fill,Kontext24GB GPU✅ Supported

⚙️ Installation Guide

0. System Requirements

Mandatory: Install Microsoft Visual C++ Redistributable if encountering DLL errors

1. Automated Setup

Recommended Method

git clone https://github.com/lrzjason/T2ITrainer.git cd T2ITrainer setup.bat
  • Handles: Virtual Environment • Dependency Installation • Model Downloads

2. Manual Installation

Clone Repository 🌐

git clone https://github.com/lrzjason/T2ITrainer.git cd T2ITrainer

Virtual Environment 🛠️

python -m venv venv call venv\Scripts\activate pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121

Model Downloads 📥

# Kolors huggingface-cli download Kwai-Kolors/Kolors --local-dir kolors_models/ # NF4 Flux Fill for low gpu huggingface-cli download "lrzjason/flux-fill-nf4" --local-dir flux_models/fill/ # skip if downloaded nf 4 Flux Fill huggingface-cli download "black-forest-labs/FLUX.1-fill-dev" --local-dir flux_models/fill/ # SD3.5 Models huggingface-cli download "stabilityai/stable-diffusion-3.5-large" --local-dir "sd3.5L/" # NF4 Flux kontext huggingface-cli download "lrzjason/flux-kontext-nf4" --local-dir flux_models/kontext/

Folder Structure

flux_models:

flux_models

kontext:

kontext

🚀 Launch Options

ScriptCommandSpecial Notes
Flux kontextpython ui_flux_fill.pyRequires diffusers>=0.32.0, 24GB VRAM Recommended
Flux Fillpython ui_flux_fill.pyRequires diffusers>=0.32.0, 24GB VRAM Recommended
Kolorspython ui.pyNeeds Fixed VAE
SD3.5 Largepython ui_sd35.py24GB VRAM Recommended

🔧 Parameter Configuration Guide

CivitAI Article


🌌 Flux Model Management

Kontext Model Installation

Inpainting Model Setup

huggingface-cli download "lrzjason/flux-kontext-nf4" --local-dir flux_models/kontext/

For more details (example dataset):

Fill Model Installation (Skip if train kontext)

Inpainting Model Setup

huggingface-cli download "lrzjason/flux-fill-nf4" --local-dir flux_models/fill/

For more details (example dataset):

Dev Model Download (Skip if train fill and kontext)

Dev Model Installation

huggingface-cli download "black-forest-labs/FLUX.1-dev" --local-dir flux_models/dev/

⚙️ Flux Training Recommended Parameters

CategorySettings
Base ConfigurationRank 16, AdamW, Lr 1e-4
24GB GPU512 resolution, Batch Size 1
VRAM OptimizationUse nf4 based training
Precisionbf16

💻 VRAM Usage nf4

VRAM Peak

💻 VRAM Usage (bf16, blocks_to_swap=10)

VRAM Peak
VRAM Low

🔧 Kolors Testing & Integration

  • Kolors Workflow:

    # ComfyUI Plugins git clone https://github.com/kijai/ComfyUI-KwaiKolorsWrapper git clone https://github.com/MinusZoneAI/ComfyUI-Kolors-MZ
  • Configuration Guide: 📖 CivitAI Article

🆘 Troubleshooting

  • Kolors Black Image Issue: Ensure you're using FP16 Fixed VAE
  • VRAM Limitations: Adjust blocks_to_swap parameter (higher values reduce memory usage)
  • Windows DLL Errors: Verify VC++ Redistributable installation

Star History

Star History Chart

Old Change logs:

Recent Change Logs:

  • 2025-06-27: Support kontxt nf4 training

Sponsor:

  • Thanks to @sourceful support me making flux fill lora training script.

📬 Contact

Sponsors me for more open source projects:

Buy me a coffee:

Buy Me a Coffee QR

WeChat:

WeChat QR

Acknowledgements:

  • Thanks to chenpipi0807 for Chinese translation and language switch support
  • Thanks for diffusers and Terminus Research Group
  • Thanks to minienglish1 and Freon in EveryDream Discord for the assistance.
  • Special thanks to kohya ss for references from the training codebase.
  • Thanks to Kblueleaf for coding reference on hunyuandit gradient checkpoint implementation.
  • Thanks to Kolors for the open-source checkpoint.
  • Thanks to comfyui for the wonderful codebase.
  • Thanks to emojiiii for the setup.bat script and other updates.
  • Thanks to Rohit Gandikota and related authors of Concept Sliders https://github.com/rohitgandikota/sliders

About

No description, topics, or website provided.
Language
Python97.8%
License1%
Markdown0.6%
Shell0.4%
Others0.2%