logo
0
2
Login
Lightx2v<lightx2v@users.noreply.huggingface.co>
Update README.md

🎬 Wan2.2 Distilled Models

⚡ High-Performance Video Generation with 4-Step Inference

Distillation-accelerated version of Wan2.2 - Dramatically faster speed with excellent quality

img_lightx2v


🤗 HuggingFace GitHub License


🌟 What's Special?

⚡ Ultra-Fast Generation

  • 4-step inference (vs traditional 50+ steps)
  • Approximately 2x faster using LightX2V than ComfyUI
  • Near real-time video generation capability

🎯 Flexible Options

  • Dual noise control: High/Low noise variants
  • Multiple precision formats (BF16/FP8/INT8)
  • Full 14B parameter models

💾 Memory Efficient

  • FP8/INT8: ~50% size reduction
  • CPU offload support
  • Optimized for consumer GPUs

🔧 Easy Integration

  • Compatible with LightX2V framework
  • ComfyUI support
  • Simple configuration files

📦 Model Catalog

🎥 Model Types

🖼️ Image-to-Video (I2V) - 14B Parameters

Transform static images into dynamic videos with advanced quality control

  • 🎨 High Noise: More creative, diverse outputs
  • 🎯 Low Noise: More faithful to input, stable outputs

📝 Text-to-Video (T2V) - 14B Parameters

Generate videos from text descriptions

  • 🎨 High Noise: More creative, diverse outputs
  • 🎯 Low Noise: More stable and controllable outputs
  • 🚀 Full 14B parameter model

🎯 Precision Versions

PrecisionModel IdentifierModel SizeFrameworkQuality vs Speed
🏆 BF16lightx2v_4step~28.6 GBLightX2V⭐⭐⭐⭐⭐ Highest Quality
FP8scaled_fp8_e4m3_lightx2v_4step~15 GBLightX2V⭐⭐⭐⭐ Excellent Balance
🎯 INT8int8_lightx2v_4step~15 GBLightX2V⭐⭐⭐⭐ Fast & Efficient
🔷 FP8 ComfyUIscaled_fp8_e4m3_lightx2v_4step_comfyui~15 GBComfyUI⭐⭐⭐ ComfyUI Ready

📝 Naming Convention

# Format: wan2.2_{task}_A14b_{noise_level}_{precision}_lightx2v_4step.safetensors # I2V Examples: wan2.2_i2v_A14b_high_noise_lightx2v_4step.safetensors # I2V High Noise - BF16 wan2.2_i2v_A14b_high_noise_scaled_fp8_e4m3_lightx2v_4step.safetensors # I2V High Noise - FP8 wan2.2_i2v_A14b_low_noise_int8_lightx2v_4step.safetensors # I2V Low Noise - INT8 wan2.2_i2v_A14b_low_noise_scaled_fp8_e4m3_lightx2v_4step_comfyui.safetensors # I2V Low Noise - FP8 ComfyUI

💡 Browse All Models: View Full Model Collection →


🚀 Usage

Method 1: LightX2V (Recommended ⭐)

LightX2V is a high-performance inference framework optimized for these models, approximately 2x faster than ComfyUI with better quantization accuracy. Highly recommended!

Quick Start

  1. Download model (using I2V FP8 as example)
huggingface-cli download lightx2v/Wan2.2-Distill-Models \ --local-dir ./models/wan2.2_i2v \ --include "wan2.2_i2v_A14b_high_noise_scaled_fp8_e4m3_lightx2v_4step.safetensors"
huggingface-cli download lightx2v/Wan2.2-Distill-Models \ --local-dir ./models/wan2.2_i2v \ --include "wan2.2_i2v_A14b_low_noise_scaled_fp8_e4m3_lightx2v_4step.safetensors"

💡 Tip: For T2V models, follow the same steps but replace i2v with t2v in the filenames

  1. Clone LightX2V repository
git clone https://github.com/ModelTC/LightX2V.git cd LightX2V
  1. Install dependencies
pip install -r requirements.txt

Or refer to Quick Start Documentation to use docker

  1. Select and modify configuration file

Choose appropriate configuration based on your GPU memory:

80GB+ GPUs (A100/H100)

24GB+ GPUs (RTX 4090)

  1. Run inference (using I2V as example)
cd scripts bash wan22/run_wan22_moe_i2v_distill.sh

📝 Note: Update model paths in the script to point to your Wan2.2 model. Also refer to LightX2V Model Structure Documentation

LightX2V Documentation


Method 2: ComfyUI

Please refer to workflow

⚠️ Important Notes

Other Components: These models only contain DIT weights. Additional components needed at runtime:

  • T5 text encoder
  • CLIP vision encoder
  • VAE encoder/decoder
  • Tokenizer

Please refer to LightX2V Documentation for instructions on organizing the complete model directory.

🤝 Community

If you find this project helpful, please give us a ⭐ on GitHub