logo
0
0
Login

EfficientViT-SAM: Accelerated Segment Anything Model Without Performance Loss

Pretrained Models

Latency/Throughput is measured on NVIDIA Jetson AGX Orin, and NVIDIA A100 GPU with TensorRT, fp16. Data transfer time is included.

ModelResolutionCOCO mAPLVIS mAPParamsMACsJetson Orin Latency (bs1)A100 Throughput (bs16)Checkpoint
EfficientViT-SAM-L0512x51245.741.834.8M35G8.2ms762 images/slink
EfficientViT-SAM-L1512x51246.242.147.7M49G10.2ms638 images/slink
EfficientViT-SAM-L2512x51246.642.761.3M69G12.9ms538 images/slink
EfficientViT-SAM-XL01024x102447.543.9117.0M185G22.5ms278 images/slink
EfficientViT-SAM-XL11024x102447.844.4203.3M322G37.2ms182 images/slink

Table1: Summary of All EfficientViT-SAM Variants. COCO mAP and LVIS mAP are measured using ViTDet's predicted bounding boxes as the prompt. End-to-end Jetson Orin latency and A100 throughput are measured with TensorRT and fp16.

Usage

# segment anything from efficientvit.sam_model_zoo import create_sam_model efficientvit_sam = create_sam_model( name="xl1", weight_url="assets/checkpoints/sam/xl1.pt", ) efficientvit_sam = efficientvit_sam.cuda().eval()
from efficientvit.models.efficientvit.sam import EfficientViTSamPredictor efficientvit_sam_predictor = EfficientViTSamPredictor(efficientvit_sam)
from efficientvit.models.efficientvit.sam import EfficientViTSamAutomaticMaskGenerator efficientvit_mask_generator = EfficientViTSamAutomaticMaskGenerator(efficientvit_sam)

About

No description, topics, or website provided.
7.14 GiB
0 forks0 stars1 branches0 TagREADMEApache-2.0 license