logo
0
0
Login
ooo<hhoh@users.noreply.huggingface.co>
Update README.md


🤗 Hugging Face  |   🤖 ModelScope  |  

🖥️ Official Website  |   🕹️ Demo    

GITHUB

Model Introduction

The Hunyuan Translation Model comprises a translation model, Hunyuan-MT-7B, and an ensemble model, Hunyuan-MT-Chimera. The translation model is used to translate source text into the target language, while the ensemble model integrates multiple translation outputs to produce a higher-quality result. It primarily supports mutual translation among 33 languages, including five ethnic minority languages in China.

Key Features and Advantages

  • In the WMT25 competition, the model achieved first place in 30 out of the 31 language categories it participated in.
  • Hunyuan-MT-7B achieves industry-leading performance among models of comparable scale
  • Hunyuan-MT-Chimera-7B is the industry’s first open-source translation ensemble model, elevating translation quality to a new level
  • A comprehensive training framework for translation models has been proposed, spanning from pretrain → cross-lingual pretraining (CPT) → supervised fine-tuning (SFT) → translation enhancement → ensemble refinement, achieving state-of-the-art (SOTA) results for models of similar size

Related News

  • 2025.9.1 We have open-sourced Hunyuan-MT-7B , Hunyuan-MT-Chimera-7B on Hugging Face.

 

模型链接

Model NameDescriptionDownload
Hunyuan-MT-7BHunyuan 7B translation model🤗 Model
Hunyuan-MT-7B-fp8Hunyuan 7B translation model,fp8 quant🤗 Model
Hunyuan-MT-ChimeraHunyuan 7B translation ensemble model🤗 Model
Hunyuan-MT-Chimera-fp8Hunyuan 7B translation ensemble model,fp8 quant🤗 Model

Prompts

Prompt Template for ZH<=>XX Translation.

把下面的文本翻译成<target_language>,不要额外解释。 <source_text>

Prompt Template for XX<=>XX Translation, excluding ZH<=>XX.

Translate the following segment into <target_language>, without additional explanation. <source_text>

Prompt Template for Hunyuan-MT-Chmeria-7B

Analyze the following multiple <target_language> translations of the <source_language> segment surrounded in triple backticks and generate a single refined <target_language> translation. Only output the refined translation, do not explain. The <source_language> segment: ```<source_text>``` The multiple <target_language> translations: 1. ```<translated_text1>``` 2. ```<translated_text2>``` 3. ```<translated_text3>``` 4. ```<translated_text4>``` 5. ```<translated_text5>``` 6. ```<translated_text6>```

 

Use with transformers

First, please install transformers, recommends v4.56.0

pip install transformers==4.56.0

The following code snippet shows how to use the transformers library to load and apply the model.

!!! If you want to load fp8 model with transformers, you need to change the name"ignored_layers" in config.json to "ignore" and upgrade the compressed-tensors to compressed-tensors-0.11.0.

we use tencent/Hunyuan-MT-7B for example

from transformers import AutoModelForCausalLM, AutoTokenizer import os model_name_or_path = "tencent/Hunyuan-MT-7B" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto") # You may want to use bfloat16 and/or move to GPU here messages = [ {"role": "user", "content": "Translate the following segment into Chinese, without additional explanation.\n\nIt’s on the house."}, ] tokenized_chat = tokenizer.apply_chat_template( messages, tokenize=True, add_generation_prompt=False, return_tensors="pt" ) outputs = model.generate(tokenized_chat.to(model.device), max_new_tokens=2048) output_text = tokenizer.decode(outputs[0])

We recommend using the following set of parameters for inference. Note that our model does not have the default system_prompt.

{ "top_k": 20, "top_p": 0.6, "repetition_penalty": 1.05, "temperature": 0.7 }

Supported languages:

LanguagesAbbr.Chinese Names
Chinesezh中文
Englishen英语
Frenchfr法语
Portuguesept葡萄牙语
Spanishes西班牙语
Japaneseja日语
Turkishtr土耳其语
Russianru俄语
Arabicar阿拉伯语
Koreanko韩语
Thaith泰语
Italianit意大利语
Germande德语
Vietnamesevi越南语
Malayms马来语
Indonesianid印尼语
Filipinotl菲律宾语
Hindihi印地语
Traditional Chinesezh-Hant繁体中文
Polishpl波兰语
Czechcs捷克语
Dutchnl荷兰语
Khmerkm高棉语
Burmesemy缅甸语
Persianfa波斯语
Gujaratigu古吉拉特语
Urduur乌尔都语
Telugute泰卢固语
Marathimr马拉地语
Hebrewhe希伯来语
Bengalibn孟加拉语
Tamilta泰米尔语
Ukrainianuk乌克兰语
Tibetanbo藏语
Kazakhkk哈萨克语
Mongolianmn蒙古语
Uyghurug维吾尔语
Cantoneseyue粤语

Citing Hunyuan-MT:

@misc{hunyuanmt2025, title={Hunyuan-MT Technical Report}, author={Mao Zheng, Zheng Li, Bingxin Qu, Mingyang Song, Yang Du, Mingrui Sun, Di Wang, Tao Chen, Jiaqi Zhu, Xingwu Sun, Yufei Wang, Can Xu, Chen Li, Kai Wang, Decheng Wu}, howpublished={\url{https://github.com/Tencent-Hunyuan/Hunyuan-MT}}, year={2025} }